If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16t^2-160t-384=0
a = 16; b = -160; c = -384;
Δ = b2-4ac
Δ = -1602-4·16·(-384)
Δ = 50176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{50176}=224$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-224}{2*16}=\frac{-64}{32} =-2 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+224}{2*16}=\frac{384}{32} =12 $
| 19v+10−4=–18+16v | | t=15-1.5t | | 3f+-3=0 | | -1.8x=-36 | | 8x-7=79 | | 19=9+2u | | 5x-7+11-2x= | | X.6x+2=3x+20 | | 9=x=-21 | | -5=-8+x/3 | | -(x+2)+3=73 | | -7.1+y=3.7 | | X.8x-13=51 | | 7(x+7)=3 | | 6x+33=3x | | 2/5k-1/10k=1/2k+1 | | 4d-48948d=1 | | 7q-46+3q-6=180 | | 8x+7-2x+1=15 | | 55+3+4x=90 | | 2x+3(8–3x)=3 | | (2x-10)=(x+14)(2x-10)=(x+40) | | 6=p=-22 | | 13=h/4+10 | | x+11=2–2x | | 8/3x+1/3x=4+7/3 | | -7+4w=6w-5 | | x+3+x=48 | | 3x+3=13+4x | | -1/3x-8=-4 | | -11-1(1+11v)=-2v+51 | | -6+c=-23 |